The simplest possible model with criteria interactions

Marc Pirlot
Université de Mons, Belgium

June 9, 2017
UMONS

Sorting Boolean vectors in 2 categories

- Alternatives or objects are Boolean vectors $x=\left(x_{1}, \ldots, x_{n}\right)$
- They are sorted, monotonically, in two categories $\mathcal{G}=$ "good" and $\mathcal{B}=$ "bad"

Sorting Boolean vectors in 2 categories

- Alternatives or objects are Boolean vectors $x=\left(x_{1}, \ldots, x_{n}\right)$
- They are sorted, monotonically, in two categories $\mathcal{G}=$ "good" and $\mathcal{B}=$ "bad"

The assignment function is

- a "positive" Boolean function f

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathcal{G} \\ 0 & \text { if } x \in \mathcal{B}\end{cases}
$$

Sorting Boolean vectors in 2 categories

- Alternatives or objects are Boolean vectors $x=\left(x_{1}, \ldots, x_{n}\right)$
- They are sorted, monotonically, in two categories $\mathcal{G}=$ "good" and $\mathcal{B}=$ "bad"

The assignment function is

- a "positive" Boolean function f

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathcal{G} \\ 0 & \text { if } x \in \mathcal{B}\end{cases}
$$

- "positive" means "non-decreasing"

$$
x \geq y \quad \Rightarrow \quad f(x) \geq f(y)
$$

Remark

- x can be interpreted as a subset of the set of criteria $\{1, \ldots, n\}$

Remark

- x can be interpreted as a subset of the set of criteria $\{1, \ldots, n\}$
- $f(x)=1$ means that x is a sufficient (or winning) coalition (SC) of criteria

Threshold functions

Some assignment rules f can be represented by additive weights and a threshold

Threshold Boolean functions

$$
\begin{aligned}
f(x)=1 & \Leftrightarrow \quad \sum_{i=1}^{n} w_{i} x_{i} \geq \lambda \\
& \Leftrightarrow \quad \sum_{i \in A} w_{i} \geq \lambda \quad \text { for } x=1_{A}
\end{aligned}
$$

- The true points of $f(f=1)$ can be separated from the false points $(f=0)$ by an affine function

Examples

Example 1

- $n=4$
- Sufficient Coalitions $=$ all subsets of cardinal at least 3

Examples

Example 1

- $n=4$
- Sufficient Coalitions $=$ all subsets of cardinal at least 3
- $w_{i}=1 / 4 \quad \lambda=3 / 4$

Examples

Example 1

- $n=4$
- Sufficient Coalitions $=$ all subsets of cardinal at least 3
- $w_{i}=1 / 4 \quad \lambda=3 / 4$
- $x=(1110) \quad \rightarrow \quad \sum_{i=1}^{4}=3 / 4 \geq \lambda$

Examples

Example 2

- $n=4$
- Sufficient Coalitions $=\{13,14,23,24\}$

Examples

Example 2

- $n=4$
- Sufficient Coalitions $=\{13,14,23,24\}$
- This rule cannot be represented by weights and threshold

Examples

Example 2

- $n=4$
- Sufficient Coalitions $=\{13,14,23,24\}$
- This rule cannot be represented by weights and threshold

$$
\left\{\begin{array}{l}
w_{1}+w_{3} \geq \lambda \\
w_{1}+w_{4} \geq \lambda \\
w_{2}+w_{3} \geq \lambda \\
w_{2}+w_{4} \geq \lambda \\
w_{1}+w_{2}<\lambda \\
w_{3}+w_{4}<\lambda
\end{array}\right.
$$

Examples

Example 2

- $n=4$
- Sufficient Coalitions $=\{13,14,23,24\}$
- This rule cannot be represented by weights and threshold

$$
\left\{\begin{array}{l}
w_{1}+w_{3} \geq \lambda \\
w_{1}+w_{4} \geq \lambda \\
w_{2}+w_{3} \geq \lambda \\
w_{2}+w_{4} \geq \lambda \\
w_{1}+w_{2}<\lambda \\
w_{3}+w_{4}<\lambda
\end{array}\right.
$$

- summing up the first four inequalities, we get that $\lambda \leq 1 / 2 \sum_{i=1}^{4} w_{i} ;$

Examples

Example 2

- $n=4$
- Sufficient Coalitions $=\{13,14,23,24\}$
- This rule cannot be represented by weights and threshold

$$
\left\{\begin{array}{l}
w_{1}+w_{3} \geq \lambda \\
w_{1}+w_{4} \geq \lambda \\
w_{2}+w_{3} \geq \lambda \\
w_{2}+w_{4} \geq \lambda \\
w_{1}+w_{2}<\lambda \\
w_{3}+w_{4}<\lambda
\end{array}\right.
$$

- summing up the first four inequalities, we get that $\lambda \leq 1 / 2 \sum_{i=1}^{4} w_{i} ;$
- summing up the last two yields $\lambda>1 / 2 \sum_{i=1}^{4} w_{i}$.

k-additive positive Boolean functions

Result

For any positive Boolean function, its true points can be separated from its false points by means of a monotone (pseudo-)Boolean multilinear polynomial p of some degree k :

k-additive positive Boolean functions

Result

For any positive Boolean function, its true points can be separated from its false points by means of a monotone (pseudo-)Boolean multilinear polynomial p of some degree k :

$$
p(x)=\sum_{A:|A| \leq k} c(A) \prod_{i \in A} x_{i}
$$

and

$$
f(x)=1 \quad \Leftrightarrow \quad p(x) \geq 0
$$

Cases for $p(x)=\sum_{A:|A| \leq k} c(A) \prod_{i \in A} x_{i} \geq 0$

$k=1$: threshold functions

$$
p(x)=c_{0}+\sum_{i} c_{i} x_{i} \geq 0
$$

Cases for $p(x)=\sum_{A:|A| \leq k} c(A) \prod_{i \in A} x_{i} \geq 0$

$k=1$: threshold functions

$$
p(x)=c_{0}+\sum_{i} c_{i} x_{i} \geq 0
$$

iff

$$
\sum_{i} c_{i} x_{i} \geq-c_{0}=\lambda
$$

Cases for $p(x)=\sum_{A:|A| \leq k} c(A) \prod_{i \in A} x_{i} \geq 0$

$k=2$

$$
p(x)=c_{0}+\sum_{i} c_{i} x_{i}+\sum_{i \neq j} c_{i j} x_{i} x_{j} \geq 0
$$

Cases for $p(x)=\sum_{A:|A| \leq k} c(A) \prod_{i \in A} x_{i} \geq 0$

$k=2$

$$
p(x)=c_{0}+\sum_{i} c_{i} x_{i}+\sum_{i \neq j} c_{i j} x_{i} x_{j} \geq 0
$$

iff

$$
\sum_{i} c_{i} x_{i}+\sum_{i \neq j} c_{i j} x_{i} x_{j} \geq-c_{0}=\lambda
$$

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

\mathcal{G} and \mathcal{B} can be separated by a multilinear polynomial of degree 2

- $c_{i}=0.25$
- $c_{12}=c_{34}=-0.1$
- $-c_{0}=\lambda=0.5$

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

\mathcal{G} and \mathcal{B} can be separated by a multilinear polynomial of degree 2

- $c_{i}=0.25$
- $c_{12}=c_{34}=-0.1$
- $-c_{0}=\lambda=0.5$
- $p(1100)=0.4<0.5$

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

\mathcal{G} and \mathcal{B} can be separated by a multilinear polynomial of degree 2

- $c_{i}=0.25$
- $c_{12}=c_{34}=-0.1$
- $-c_{0}=\lambda=0.5$
- $p(1100)=0.4<0.5$
- $p(1110)=0.75-0.1 \geq 0.5$

Interpretation
There is a negative synergy between 1,2 and between 3,4

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

Another interpretation is possible

- $c_{i}=0.25$
- $c_{13}=c_{14}=c_{23}=c_{24}=0.1$
- $-c_{0}=\lambda=0.6$

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

Another interpretation is possible

- $c_{i}=0.25$
- $c_{13}=c_{14}=c_{23}=c_{24}=0.1$
- $-c_{0}=\lambda=0.6$
- $p(1100)=0.5<0.6$

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

Another interpretation is possible

- $c_{i}=0.25$
- $c_{13}=c_{14}=c_{23}=c_{24}=0.1$
- $-c_{0}=\lambda=0.6$
- $p(1100)=0.5<0.6$
- $p(1010)=0.5+0.1 \geq 0.6$

Interpretation

There are positive synergies between $\{1,3\} ;\{1,4\} ;\{2,3\}$ and between $\{2,4\}$

Conclusion

- The positive or negative character of synergies does not seem to be intrinsic

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

Another interpretation is possible

- $c_{i}=0.25$
- $c_{13}=c_{14}=c_{23}=c_{24}=0.1$
- $-c_{0}=\lambda=0.6$
- $p(1100)=0.5<0.6$
- $p(1010)=0.5+0.1 \geq 0.6$

Interpretation

There are positive synergies between $\{1,3\} ;\{1,4\} ;\{2,3\}$ and between $\{2,4\}$

Conclusion

- The positive or negative character of synergies does not seem to be intrinsic
- For example 2, some non-null interaction is needed

Example 2 : Sufficient Coalitions $=\{13,14,23,24\}$

Another interpretation is possible

- $c_{i}=0.25$
- $c_{13}=c_{14}=c_{23}=c_{24}=0.1$
- $-c_{0}=\lambda=0.6$
- $p(1100)=0.5<0.6$
- $p(1010)=0.5+0.1 \geq 0.6$

Interpretation

There are positive synergies between $\{1,3\} ;\{1,4\} ;\{2,3\}$ and between $\{2,4\}$

Conclusion

- The positive or negative character of synergies does not seem to be intrinsic
- For example 2, some non-null interaction is needed
- For example 1 , the separating function can be linear $(k=1)$

Enumerating and categorizing positive Boolean functions

 up to $k=6$| n | \mathcal{C}_{1} | | \mathcal{C}_{2} | \mathcal{C}_{3} | $R(n)$ | | |
| ---: | ---: | ---: | ---: | :--- | ---: | :--- | ---: |
| 0 | 2 | (100.0%) | 0 | (00.00%) | 0 | (00.00%) | 2 |
| 1 | 3 | (100.0%) | 0 | (00.00%) | 0 | (00.00%) | 3 |
| 2 | 5 | (100.0%) | 0 | (00.00%) | 0 | (00.00%) | 5 |
| 3 | 10 | (100.0%) | 0 | (00.00%) | 0 | (00.00%) | 10 |
| 4 | 27 | (90.00%) | 3 | (10.00%) | 0 | (00.00%) | 30 |
| 5 | 119 | (56.67%) | 91 | (43.33%) | 0 | (00.00%) | 210 |
| 6 | 1113 | (06.81%) | 14902 | (91.13%) | 338 | (02.07%) | 16353 |

Table: Number and proportion of inequivalent families of SCs that are representable by a 1-, 2- or 3-additive capacity

Comments

- Up to $n=3$, all positive Boolean functions are threshold function $(k=1)$

Comments

- Up to $n=3$, all positive Boolean functions are threshold function $(k=1)$
- Up to $n=5$, all positive Boolean functions are $k=2$-additive

Comments

- Up to $n=3$, all positive Boolean functions are threshold function $(k=1)$
- Up to $n=5$, all positive Boolean functions are $k=2$-additive
- In other words, it can always be avoided to use 3-interactions up to $n=5$

Examples requiring 3-interactions for $n=6$

Families of Minimal Sufficient Coalitions

- $\{136,234,125,456\}$

Examples requiring 3-interactions for $n=6$

Families of Minimal Sufficient Coalitions

- $\{136,234,125,456\}$
- $\{135,256,345,36,234,456,1245,146,123\}$

Examples requiring 3-interactions for $n=6$

Families of Minimal Sufficient Coalitions

- $\{136,234,125,456\}$
- $\{135,256,345,36,234,456,1245,146,123\}$

There are many others (338 inequivalent families requiring 3-interactions)

Examples requiring 3-interactions for $n=6$

Families of Minimal Sufficient Coalitions

- $\{136,234,125,456\}$
- $\{135,256,345,36,234,456,1245,146,123\}$

There are many others (338 inequivalent families requiring 3-interactions)
Reference: Enumerating and categorizing positive Boolean functions separable by a k-additive capacity. E. Ersek Uyanık, O.Sobrie, V. Mousseau, M. Pirlot, DAM9907 Discrete Applied Mathematics, to appear.

